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Abstract-This paper presents a PArallel Self-Timed Adder (PASTA). It is based on recursive formulation and 
use only half adders for performing multi bit binary addition. Theoretically the operation is parallel for those bits 
that do not need any carry chain propagation. Thus the new approach attains logarithmic performance without 
any special speed-up circuitry or look-ahead schema. The corresponding CMOS implementation of the design 
along with completion detections unit is also presented. The design is regular and does not have any practical 
limitations of fan-ins or fan-outs or complex interconnections. Simulation have been performed using Tanner 
Tool and verify the practicality and superiority of the proposed approach over existing asynchronous adders. 
 

Index Terms-Asynchronous circuits; Binary adders; CMOS design; Digital arithmetic. 

1. INTRODUCTION 

Binary addition is the single most important operation 
that a processor performs. In addition to explicit 
arithmetic (such ad addition, subtraction, 
multiplication, and division) performed in a program, 
additions are performed to increment program 
counters and calculate effective address [1]. The 
performance of processors is significantly influenced 
by the speed of their adders (it is shown by [2]). 
Statistics presented in [1], [2] show that, in a 
prototypical RISC machine (DLX), 72 percent of the 
instructions perform additions (or subtraction) in data 
path. It is even           (reported by [3]) reaches to 80 
percent in ARM processors. 

The adders can be sequential or combinational. As 
the sequential adders are bound to perform slowly due 
to its incremental nature of operation it is not 
considered for parallel and fast adders. The Half-
Adders (HA) are simplest single bit adders. The full-
adders are single bit adders with the provision of carry 
input and output. The full-adders are typically 
composed of two HAs and hence are expensive than 
half-adders in terms of area, time and interconnection 
complexity. The most common approach for designing 
multi-bit adders is to form a chain of FA blocks by 
connecting the carry out bit of a FA to the carry in bit 
of the next FA block. 

Circuits may be classified as synchronous or 
asynchronous. Synchronous circuits have a clock to 
synchronize the operations of subsystems, while 
asynchronous circuits do not. Most of the adders have 
been designed for synchronous circuits even though 
there is a string interest in clockless/asynchronous 
processors/circuits [4]. Asynchronous circuits do not 
assume any quantization of time. Therefore, they hold 
great potential for logic design as they are free from 
several problems of clocked (asynchronous) circuits.  

 

 
 
 
In principle, logic flow in asynchronous circuits is 

controlled by a request-acknowledgment handshaking 
protocol to establish a pipeline in the absence of 
clocks. Explicit handshaking blocks for small 
elements, such as bit adders, are expensive. Therefore, 
it is implicitly and efficiently managed using dual-rail 
carry propagation in adders. A valid dual-rail carry 
output also provides acknowledgment from a single-
bit adder block. Thus asynchronous adders are either 
based on full dual-rail encoding of all signals (more 
formally using null convention logic [5] that uses 
symbolically correct logic instead of Boolean logic) or 
pipelined operation using single-rail data encoding and 
dual-rail carry representation for acknowledgments. 
While these constructs add robustness to circuit 
designs, they also introduce significant overhead to the 
average case performance benefits of asynchronous 
adders. Therefore, a more efficient alternative 
approach is worthy of consideration that can address 
these problems. 

Briefly, the embodiment of this invention is to 
provide a recursive formulation for PArallel Self-
Timed Adder (PASTA) [6]. The design of PASTA is 
regular and uses Half Adders along with multiplexers 
with minimum interconnection requirement. Thus the 
interconnection and area requirement is linear making 
it easy to fabricate in VLSI chip. The design works in 
truly parallel manner for the number of bits that do not 
require carry propagation. Thus theoretically it can 
perform in logarithmic time as the carry chains for 
long number of bits are logarithmic and significantly 
smaller.  

The single bit PASTA selects the original input at 
the beginning using Multiplexers and generates the 
result of single bit summation at the first step. For 
subsequent operations, the sum bit from a single bit 
adder block of PASTA is connected recursively to 
itself for addition with the carry in from the previous 
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bit adder. Whenever a carry is generated or needs 
propagation from a bit position, it is transferred to 
higher bit level and hence its own carry is modified to 
zero. Thus the construction of plurality of adders is 
pretty similar to RCA. The advantage is that it is self-
time and logarithmic. It will signal the completion of 
addition as soon as all the carry signals from 
individual bit adders are zero. 

  The implementation in this brief is unique as it 
employs feedback through XOR logic gates to 
constitute a single-rail cyclic asynchronous sequential 
adder [7]. Cyclic circuits can be more resource 
efficient than their acyclic counterparts [8], [9]. On the 
other hand, wave pipelining (or maximal rate 
pipelining) is a technique that can apply pipelined 
inputs before the outputs are stabilized [10]. The 
proposed circuit manages automatic single-rail 
pipelining of the carry inputs separated by propagation 
and inertial delays of the gates in the circuit path. 
Thus, it is effectively a single-rail wave-pipelined 
approach and quite different from conventional 
pipelined adders using dual-rail encoding to implicitly 
present the pipelining of carry signals. 

2. BACKGROUND 

There are a myriad designs of binary adders and we 
focus here on asynchronous self-timed adder. Self-
timed refers to logic circuits that depend on and/or 
engineer timing assumptions for the correct operation. 
Self-timed adders have the potential to run faster 
averaged for dynamic date, as early completion 
sensing can avoid the need for the worst case bundled 
delay mechanism of synchronous circuits. They can be 
further classified as follows. 

2.1.  Pipelined Adder Using Single-Rail Data 
Encoding  

The asynchronous Req/Ack handshake can be used to 
enable the adder block as well as to establish the flow 
of carry signals. In most of the cases, a dual-rail carry 
convention is used for internal bitwise flow of carry 
outputs. These dual-rail signals can represent more 
than two logic values (invalid, 0, 1), and therefore can 
be used to generate bit-level acknowledgment when a 
bit operation is completed. Final completion is sensed 
when all bit Ack signals are received (high). 

The Carry-Completion Sensing adder (CCSA) is 
an example of a pipelined adder [11], which uses full 
adder (FA) functional blocks adapted for dual-rail 
carry. A CCSA is regarded as an asynchronous 
version of an RCA. Instead of using clock pulses to 
synchronize adder operation, a CCSA uses some extra 
circuitry to implement the start and completion signal. 
On the other hand, a speculative completion adder is 
proposed in [12]. It uses so-called abort logic and 

early completion to select the proper completion 
response from a number of fixed delay lines. 
However, the abort logic implementation is expensive 
due to high fan-in requirements. 

2.2.  Delay Insensitive Adder Using Dual-Rail 
Data Encoding 

Delay Insensitive (DI) adders are asynchronous adders 
that assert bundling constraints or DI operations. 
Therefore, they can correctly operate in presence of 
bounded but unknown gate and wire delays [5]. 

Though dual-rail encoding doubles the wire 
complexity, they can still be used to produce circuits 
nearly as efficient as that of the single-rail variants 
using dynamic logic or nMOS only design. An 
example 40 transistors per bit DIRCA adder is 
presented in [11] while the conventional CMOS RCA 
uses 28 transistors. 

Similar to CLA, the DICLA defines carry 
propagate, generate, and kill equations in terms of 
dual-rail encoding [11]. They do not connect the carry 
signals in a chain but rather organize them in a 
hierarchical tree. Thus, they can potentially operate 
faster when there is long carry chain. 

A further optimization is provided from the 
observation that dual-rail encoding logic can benefit 
from settling of either the 0 or 1 path. Dual-rail logic 
need not wait for both paths to be evaluated. Thus, it is 
possible to further speed up the carry look-ahead 
circuitry to send carry-generate/carry-kill signals to 
any level in the tree. This is elaborated in [11] and 
referred as DIRCA with speedup circuitry 
(DICLASP).  

3. DESIGN OF PARALLEL SELT-TIMED 
ADDER (PASTA) 

The architecture and theory behind PASTA is 
presented in this section. The adder first accepts two 
operands to perform half-additions for each bit. 
Subsequently, it iterates using earlier generated carry 
and sums to perform half-additions repeatedly until all 
carry bits are consumed and settled at zero level. 

The general block diagram of the PArallel Self-
Timed Adder (PASTA) is presented in Fig. 1. Multi-
bit adders are often constructed from single bit adders 
using combinational and sequential circuits for 
asynchronous or synchronous design. The sequential 
circuits are often serial/chain adders and are not the 
match for high speed combination adder. 

Let an-1an-2. . . a0 and bn-1bn-2. . . b0 be two n-bit binary 
numbers with sum and carry denoted by Sn-1Sn-2. . . S0 

and cncn-1. . . c0 where 0th bit represents the least 
significant bit. Basic single bit adders are now 
discussed. 
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Fig. 1.  General block diagram of Parallel Self-Timed 

Adder 

3.1.  Single Bit Adder 

Single bit Half-Adder (HA) and Full-Adder (FA) are 
the fundamental building block for nearly all high-
speed adders. A single bit HA for ith bit addition is 
logically formulated as follows: 

Si =ai⊕bi 

Ci+1 = aibi                                                                                   Eq. (1) 
A single bit full adder implementation additionally 

takes consideration of the carry-in input from the 
preceding single bit unit and formulated as follows: 

Si =ai⊕bi⊕ci 
Ci+1 = aibi+( ai⊕bi) ci                                  Eq. (2) 

The recursive binary addition formula for addition 
of two n-bit numbers as follows.    

3.2.  Recursive Formula for Binary addition 

Let Si
j and Ci+1

j denote the sum and carry, respectively, 
for ith bit at the jth iteration. The initial condition (j=0) 
for addition is formulated as follows:  

Si
0

 =ai⊕bi 

Ci+1
0

 = aibi  .                                                                 Eq. (3) 
The jth iteration for the recursive addition is 

formulated by  
Si

j = Si
j-1 ⊕ Ci

j-1,     0  ≤ i < n                                    Eq. (4) 
Ci+1

j = Si
j Ci

j-1 ,       0  ≤ i < n.                        Eq. (5)                                                                                                                        

The recursion is terminated at kth iteration when 
the following condition is met: 

Cn
k+Cn-1

k+...+C1
k=0,0≤k<n                        Eq. (6) 

Now the correctness of the recursive formulation 
is inductively proved as follows. 

 
Observation 3.1. In a single bit adder with no carry 
in, the maximum obtainable result is 2(=102). 
 
Proof. It is obvious that the sum cannot exceed the 
maximum sum obtained by two highest possible 
operands and hence should be equal or less than 
2(=102). 

The significance of this observation is that for 
individual ith bit adder, the case of having Si=1  and 
Ci+1 =1 (decimal value of 3) is impossible as it will 
exceed the maximum of sum of two input which is 

2(binary 10). Thus the only valid (Si, Ci+1) forms by ith 

bit adder are (0, 0), (0,1) and (1,0). 
 
Theorem 3.2. The recursive formulation of Eq. (3)-
Eq. (6) will produce correct sum for any number of 
bits and will terminate within a finite time. 
 
Proof. We prove the correctness of the algorithm by 
induction on the required number of iteration for 
completing the addition (meeting the terminating 
condition). 
 
Basis. Consider the operand choices for which no 
carry propagation is required, i.e. Ci

0=0 for ∀i, i ∈ 
[0..n]. The proposed formulation will produce the 
correct result by a single-bit computation time and 
terminate instantly as Eq. (6) is met. 
 
Induction. Assume that Ci+1

k ≠ 0 for some ith bit at kth 
iteration. Let l be such a bit for which Cl+1

k= 1. First 
we show that it will be killed in the (k + 1)th iteration 
and next we show that it will be successfully 
transmitted to next higher bit in the (k + 1)th iteration. 

According to Observation 3.1, the kth iteration of 
lth bit state (Ck

l+1, S
k
l) and (l + 1)th bit state (Ck

l+2, S
k
l+1) 

could be in any of (0, 0), (0, 1), or (1, 0) states. As 
Ck

l+1 = 1, it implies that Sk
l = 0. Hence, from (3), 

Ck+1
l+1 = 0 for any input condition between 0 to l bits.  
We now consider the (l + 1)th bit state (Ck

l+2, S
k
l+1) 

for kth iteration. It could also be in any of (0, 0), (0, 1), 
or (1, 0) states. In (k+1)th iteration, the (0, 0) and (1, 0) 
states from the kth iteration will correctly produce 
output of (0, 1) following Eq. (4) and Eq. (5). For (0, 
1) state, the carry successfully propagates through this 
bit level following Eq. (5). 

Thus, all the single-bit adders will successfully kill 
or propagate the carries until all carries are zero 
fulfilling the terminating condition. 

3.3.  Architecture of PASTA 

The general architecture of the adder is shown in Fig. 
1. The selection input for two-input multiplexers 
corresponds to the Req handshake signal and will be a 
single 0 to 1 transition denoted by SEL. It will initially 
select the actual operands during SEL = 0 and will 
switch to feedback/carry paths for subsequent 
iterations using SEL = 1. The feedback path from the 
HAs enables the multiple iterations to continue until 
the completion when all carry signals will assume zero 
values (terminating condition is met). 

3.4.  State Diagrams 

In Fig. 2, two state diagrams are drawn for the initial 
phase and the iterative phase of the proposed 
architecture. Each state is represented by (Ci+1, Si) pair 
where Ci+1, Si represent carry out and sum values, 
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respectively, from the ith bit adder block. During the 
initial phase, the circuit merely works as a 
combinational HA operating in fundamental mode. It 
is apparent that due to the use of HAs instead of FAs, 
state (11) cannot appear. During the iterative phase 
(SEL = 1), the feedback path through multiplexer 
block is activated. The carry transitions (Ci) are 
allowed as many times as needed to complete the 
recursion. 
 

 
Fig. 2.  State diagrams for PASTA. (a) Initial phase. 

(b) Iterative phase. 

4. IMPLEMENTATION OF PARALLEL 
SELT-TIMED ADDER (PASTA) 

A CMOS implementation for the recursive circuit is 
shown in Fig. 3. For multiplexers and AND gates we 
have used TSMC library implementations while for 
the XOR gate we have used the faster ten transistor 
implementation based on transmission gate XOR to 
match the delay with AND gates [7]. The completion 
detection following Eq.(6) is negated to obtain an 
active high completion signal (TERM). This requires a 
large fan-in n-input NOR gate. Therefore, an 
alternative more practical pseudo-nMOS ratio-ed 
design is used. The resulting design is shown in Fig. 
3(d). Using the pseudo-nMOS design, the completion 
unit avoids the high fan-in problem as all the 
connections are parallel. The pMOS transistor 
connected to VDD of this ratio-ed design acts as a load 
register, resulting in static current drain when some of 
the nMOS transistors are on simultaneously. In 
addition to the Ci s, the negative of SEL signal is also 
included for the TERM signal to ensure that the 
completion cannot be accidentally turned on during 
the initial selection phase of the actual inputs. It also 
prevents the pMOS pull up transistor from being 
always on. Hence, static current will only be flowing 
for the duration of the actual computation. 

5. SIMULATION RESULTS 

In this section, we present simulation results for 
different adders using Tanner Tool version 13.0. For 

implementation of other adders, we have used 
standard library implementations of the basic gates. 
The custom adders such as DIRCA/DICLA are 
implemented based on their most efficient designs 
from [11]. 

 

 

 

 
Fig.3. CMOS implementation of PASTA. (a) Single-

bit sum module. (b) 2×1 MUX for the 1 bit adder.  
(c) Single-bit carry module. (d) Completion signal 

detection circuit. 
Initially, we show how the present design of 

PASTA can effectively perform binary addition for 
different temperatures and process corners to validate 
the robustness under manufacturing and operational 
variations. The Worst-case, best-case and average 
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case for maximum, minimum and average length carry 
propagation is highlighted in the timing diagrams of 
FIG. 4 (a), (b) and (c). In Fig. 4, the timing diagrams 
for worst and average cases corresponding to 
maximum and average length carry chain propagation 
over random input values are highlighted. The carry 
propagates through successive bit adders like a pulse 
as evident from Fig. 4(a). The best-case corresponding 
to minimum length carry chain does not involve any 
carry propagation, and hence incurs only a single-bit 
adder delay before producing the TERM signal. The 
worst-case involves maximum carry propagation 
cascaded delay due to the carry chain length of full 16 
bit. 

 

 
(a) 

 
(b)                                             

 
(c) 

Fig.4. SPICE timing diagram for PASTA 
implementation using TSMC 0.25 µm process. (a) 

Worst-case carry propagation while adding operands 
(FFFF)16 and  (0101)16. (b) Best-case carry 

propagation while adding random operands of 
(F7F7)16 and (0000)16. (c) Average-case carry 
propagation while adding random operands of 

(F7F7)16 and (0101)16. 
 
The delay performances of different adders are 

shown in TABLE 1. We have used random operands 
to represent the average case while best case, worst 
case correspond to specific test cases representing 
zero, 32-bit carry propagation chains respectively. The 
delay for combinational adders is measured at 70% 
transition point for the result bit that experiences the 
maximum delay. For self-timed adders, it is measured 

by the delay between SEL and TERM signals, as 
depicted in Fig. 4(a). 

TABLE 1: Comparison of different 16-bit adders 
using TSMC 0.25 µm process with 5.0 volt input 
voltage(and supply voltage) in Tanner Tool v13.0 

Type of 
Adder 

Worst 
Case 
Delay 
(ns) 

Best 
Case 
Delay  
(ns) 

Average 
Case 
Delay 
(ns) 

Average 
Power 

Dissipation 
(mW) 

DIRCA  5.5  2.09  3.23  120.4  

DICLA  3.9  2.19  3.03  286.3  

CCSA  3.48  3.03  2.4  212.8  

RCA  2.7  1.46  1.67  138.3  

B-CLA  3.34  1.25  2.4  238.6  

PASTA  2.8  0.3  1.39  108  

 
PASTA performs best among the self-timed 

adders. PASTA performance is comparable with the 
best case performances of conventional adders. 
Effectively, it varies between one and four times that 
of the best adder performances. It is even shown to be 
the fastest for TSMC 0.25 µm process. For average 
cases, PASTA performance remains within two times 
to that of the best average case performances while for 
the worst case, it behaves similar to the RCA. Note 
that, PASTA completes the first iteration of the 
recursive formulation when “SEL = 0.” Therefore, the 
best case delay represents the delay required to 
generate the TERM signal only and of the order of 
picoseconds. The interesting observation is that the 
performances of the combinational adders and PASTA 
improve with the decreasing process width and VDD 
values while the performance of dual-rail adders 
decreases with scaling down of the technology [15]. 

The average power consumption of different 
adders for different operand choices (best, worst, and 
average carry chain lengths) are shown in TABLE 1. 
We measure average power consumed by 
combinational and self-timed adders for the duration 
of input pattern placement and completion of the 
addition. PASTA consumes least power among the 
self-timed adders. 

6. CONCLUSION 

This paper presents an efficient implementation of a 
PArallel Self-Timed Adder (PASTA). Initially, the 
theoretical foundation for a single-rail wave-pipelined 
adder is established. Subsequently, the architectural 
design and CMOS implementations are presented. The 
design achieves a very simple n-bit adder that is area 
and interconnection-wise equivalent to the simplest 
adder namely the RCA. Moreover, the circuit works in 
a parallel manner for independent carry chains, and 
thus achieves logarithmic average time performance 
over random input values. The completion detection 



International Journal of Research in Advent Technology, Vol.3, No.7, July 2015 
E-ISSN: 2321-9637 

 

22 
 

unit for the proposed adder is also practical and 
efficient. Simulation results are used to verify the 
advantages of the proposed approach. 
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