
International Journal of Research in Advent Technology, Vol.3, No.7, July 2015
E-ISSN: 2321-9637

17

Power Delay Analysis of Parallel Self-Timed Adder by
Recursive Approach

Kallepelli Srikanth1, M. Swetha2

M.Tech. VLSI System Design1, Asst. Prof. ECE Dept.2, Vaagdevi College of Engineering, Warangal.1, 2
Email: kallepellisrikant@gmail.com1, swetha.maheshwaram@gmail.com2

Abstract-This paper presents a PArallel Self-Timed Adder (PASTA). It is based on recursive formulation and
use only half adders for performing multi bit binary addition. Theoretically the operation is parallel for those bits
that do not need any carry chain propagation. Thus the new approach attains logarithmic performance without
any special speed-up circuitry or look-ahead schema. The corresponding CMOS implementation of the design
along with completion detections unit is also presented. The design is regular and does not have any practical
limitations of fan-ins or fan-outs or complex interconnections. Simulation have been performed using Tanner
Tool and verify the practicality and superiority of the proposed approach over existing asynchronous adders.

Index Terms-Asynchronous circuits; Binary adders; CMOS design; Digital arithmetic.

1. INTRODUCTION

Binary addition is the single most important operation
that a processor performs. In addition to explicit
arithmetic (such ad addition, subtraction,
multiplication, and division) performed in a program,
additions are performed to increment program
counters and calculate effective address [1]. The
performance of processors is significantly influenced
by the speed of their adders (it is shown by [2]).
Statistics presented in [1], [2] show that, in a
prototypical RISC machine (DLX), 72 percent of the
instructions perform additions (or subtraction) in data
path. It is even (reported by [3]) reaches to 80
percent in ARM processors.

The adders can be sequential or combinational. As
the sequential adders are bound to perform slowly due
to its incremental nature of operation it is not
considered for parallel and fast adders. The Half-
Adders (HA) are simplest single bit adders. The full-
adders are single bit adders with the provision of carry
input and output. The full-adders are typically
composed of two HAs and hence are expensive than
half-adders in terms of area, time and interconnection
complexity. The most common approach for designing
multi-bit adders is to form a chain of FA blocks by
connecting the carry out bit of a FA to the carry in bit
of the next FA block.

Circuits may be classified as synchronous or
asynchronous. Synchronous circuits have a clock to
synchronize the operations of subsystems, while
asynchronous circuits do not. Most of the adders have
been designed for synchronous circuits even though
there is a string interest in clockless/asynchronous
processors/circuits [4]. Asynchronous circuits do not
assume any quantization of time. Therefore, they hold
great potential for logic design as they are free from
several problems of clocked (asynchronous) circuits.

In principle, logic flow in asynchronous circuits is

controlled by a request-acknowledgment handshaking
protocol to establish a pipeline in the absence of
clocks. Explicit handshaking blocks for small
elements, such as bit adders, are expensive. Therefore,
it is implicitly and efficiently managed using dual-rail
carry propagation in adders. A valid dual-rail carry
output also provides acknowledgment from a single-
bit adder block. Thus asynchronous adders are either
based on full dual-rail encoding of all signals (more
formally using null convention logic [5] that uses
symbolically correct logic instead of Boolean logic) or
pipelined operation using single-rail data encoding and
dual-rail carry representation for acknowledgments.
While these constructs add robustness to circuit
designs, they also introduce significant overhead to the
average case performance benefits of asynchronous
adders. Therefore, a more efficient alternative
approach is worthy of consideration that can address
these problems.

Briefly, the embodiment of this invention is to
provide a recursive formulation for PArallel Self-
Timed Adder (PASTA) [6]. The design of PASTA is
regular and uses Half Adders along with multiplexers
with minimum interconnection requirement. Thus the
interconnection and area requirement is linear making
it easy to fabricate in VLSI chip. The design works in
truly parallel manner for the number of bits that do not
require carry propagation. Thus theoretically it can
perform in logarithmic time as the carry chains for
long number of bits are logarithmic and significantly
smaller.

The single bit PASTA selects the original input at
the beginning using Multiplexers and generates the
result of single bit summation at the first step. For
subsequent operations, the sum bit from a single bit
adder block of PASTA is connected recursively to
itself for addition with the carry in from the previous

International Journal of Research in Advent Technology, Vol.3, No.7, July 2015
E-ISSN: 2321-9637

18

bit adder. Whenever a carry is generated or needs
propagation from a bit position, it is transferred to
higher bit level and hence its own carry is modified to
zero. Thus the construction of plurality of adders is
pretty similar to RCA. The advantage is that it is self-
time and logarithmic. It will signal the completion of
addition as soon as all the carry signals from
individual bit adders are zero.

 The implementation in this brief is unique as it
employs feedback through XOR logic gates to
constitute a single-rail cyclic asynchronous sequential
adder [7]. Cyclic circuits can be more resource
efficient than their acyclic counterparts [8], [9]. On the
other hand, wave pipelining (or maximal rate
pipelining) is a technique that can apply pipelined
inputs before the outputs are stabilized [10]. The
proposed circuit manages automatic single-rail
pipelining of the carry inputs separated by propagation
and inertial delays of the gates in the circuit path.
Thus, it is effectively a single-rail wave-pipelined
approach and quite different from conventional
pipelined adders using dual-rail encoding to implicitly
present the pipelining of carry signals.

2. BACKGROUND

There are a myriad designs of binary adders and we
focus here on asynchronous self-timed adder. Self-
timed refers to logic circuits that depend on and/or
engineer timing assumptions for the correct operation.
Self-timed adders have the potential to run faster
averaged for dynamic date, as early completion
sensing can avoid the need for the worst case bundled
delay mechanism of synchronous circuits. They can be
further classified as follows.

2.1. Pipelined Adder Using Single-Rail Data
Encoding

The asynchronous Req/Ack handshake can be used to
enable the adder block as well as to establish the flow
of carry signals. In most of the cases, a dual-rail carry
convention is used for internal bitwise flow of carry
outputs. These dual-rail signals can represent more
than two logic values (invalid, 0, 1), and therefore can
be used to generate bit-level acknowledgment when a
bit operation is completed. Final completion is sensed
when all bit Ack signals are received (high).

The Carry-Completion Sensing adder (CCSA) is
an example of a pipelined adder [11], which uses full
adder (FA) functional blocks adapted for dual-rail
carry. A CCSA is regarded as an asynchronous
version of an RCA. Instead of using clock pulses to
synchronize adder operation, a CCSA uses some extra
circuitry to implement the start and completion signal.
On the other hand, a speculative completion adder is
proposed in [12]. It uses so-called abort logic and

early completion to select the proper completion
response from a number of fixed delay lines.
However, the abort logic implementation is expensive
due to high fan-in requirements.

2.2. Delay Insensitive Adder Using Dual-Rail
Data Encoding

Delay Insensitive (DI) adders are asynchronous adders
that assert bundling constraints or DI operations.
Therefore, they can correctly operate in presence of
bounded but unknown gate and wire delays [5].

Though dual-rail encoding doubles the wire
complexity, they can still be used to produce circuits
nearly as efficient as that of the single-rail variants
using dynamic logic or nMOS only design. An
example 40 transistors per bit DIRCA adder is
presented in [11] while the conventional CMOS RCA
uses 28 transistors.

Similar to CLA, the DICLA defines carry
propagate, generate, and kill equations in terms of
dual-rail encoding [11]. They do not connect the carry
signals in a chain but rather organize them in a
hierarchical tree. Thus, they can potentially operate
faster when there is long carry chain.

A further optimization is provided from the
observation that dual-rail encoding logic can benefit
from settling of either the 0 or 1 path. Dual-rail logic
need not wait for both paths to be evaluated. Thus, it is
possible to further speed up the carry look-ahead
circuitry to send carry-generate/carry-kill signals to
any level in the tree. This is elaborated in [11] and
referred as DIRCA with speedup circuitry
(DICLASP).

3. DESIGN OF PARALLEL SELT-TIMED
ADDER (PASTA)

The architecture and theory behind PASTA is
presented in this section. The adder first accepts two
operands to perform half-additions for each bit.
Subsequently, it iterates using earlier generated carry
and sums to perform half-additions repeatedly until all
carry bits are consumed and settled at zero level.

The general block diagram of the PArallel Self-
Timed Adder (PASTA) is presented in Fig. 1. Multi-
bit adders are often constructed from single bit adders
using combinational and sequential circuits for
asynchronous or synchronous design. The sequential
circuits are often serial/chain adders and are not the
match for high speed combination adder.

Let an-1an-2. . . a0 and bn-1bn-2. . . b0 be two n-bit binary
numbers with sum and carry denoted by Sn-1Sn-2. . . S0

and cncn-1. . . c0 where 0th bit represents the least
significant bit. Basic single bit adders are now
discussed.

International Journal of Research in Advent Technology, Vol.3, No.7, July 2015
E-ISSN: 2321-9637

19

Fig. 1. General block diagram of Parallel Self-Timed

Adder

3.1. Single Bit Adder

Single bit Half-Adder (HA) and Full-Adder (FA) are
the fundamental building block for nearly all high-
speed adders. A single bit HA for ith bit addition is
logically formulated as follows:

Si =ai⊕bi

Ci+1 = aibi Eq. (1)
A single bit full adder implementation additionally

takes consideration of the carry-in input from the
preceding single bit unit and formulated as follows:

Si =ai⊕bi⊕ci
Ci+1 = aibi+(ai⊕bi) ci Eq. (2)

The recursive binary addition formula for addition
of two n-bit numbers as follows.

3.2. Recursive Formula for Binary addition

Let Si
j and Ci+1

j denote the sum and carry, respectively,
for ith bit at the jth iteration. The initial condition (j=0)
for addition is formulated as follows:

Si
0

 =ai⊕bi

Ci+1
0

 = aibi . Eq. (3)
The jth iteration for the recursive addition is

formulated by
Si

j = Si
j-1 ⊕ Ci

j-1, 0 ≤ i < n Eq. (4)
Ci+1

j = Si
j Ci

j-1 , 0 ≤ i < n. Eq. (5)

The recursion is terminated at kth iteration when
the following condition is met:

Cn
k+Cn-1

k+...+C1
k=0,0≤k<n Eq. (6)

Now the correctness of the recursive formulation
is inductively proved as follows.

Observation 3.1. In a single bit adder with no carry
in, the maximum obtainable result is 2(=102).

Proof. It is obvious that the sum cannot exceed the
maximum sum obtained by two highest possible
operands and hence should be equal or less than
2(=102).

The significance of this observation is that for
individual ith bit adder, the case of having Si=1 and
Ci+1 =1 (decimal value of 3) is impossible as it will
exceed the maximum of sum of two input which is

2(binary 10). Thus the only valid (Si, Ci+1) forms by ith

bit adder are (0, 0), (0,1) and (1,0).

Theorem 3.2. The recursive formulation of Eq. (3)-
Eq. (6) will produce correct sum for any number of
bits and will terminate within a finite time.

Proof. We prove the correctness of the algorithm by
induction on the required number of iteration for
completing the addition (meeting the terminating
condition).

Basis. Consider the operand choices for which no
carry propagation is required, i.e. Ci

0=0 for ∀i, i ∈
[0..n]. The proposed formulation will produce the
correct result by a single-bit computation time and
terminate instantly as Eq. (6) is met.

Induction. Assume that Ci+1

k ≠ 0 for some ith bit at kth
iteration. Let l be such a bit for which Cl+1

k= 1. First
we show that it will be killed in the (k + 1)th iteration
and next we show that it will be successfully
transmitted to next higher bit in the (k + 1)th iteration.

According to Observation 3.1, the kth iteration of
lth bit state (Ck

l+1, S
k
l) and (l + 1)th bit state (Ck

l+2, S
k
l+1)

could be in any of (0, 0), (0, 1), or (1, 0) states. As
Ck

l+1 = 1, it implies that Sk
l = 0. Hence, from (3),

Ck+1
l+1 = 0 for any input condition between 0 to l bits.
We now consider the (l + 1)th bit state (Ck

l+2, S
k
l+1)

for kth iteration. It could also be in any of (0, 0), (0, 1),
or (1, 0) states. In (k+1)th iteration, the (0, 0) and (1, 0)
states from the kth iteration will correctly produce
output of (0, 1) following Eq. (4) and Eq. (5). For (0,
1) state, the carry successfully propagates through this
bit level following Eq. (5).

Thus, all the single-bit adders will successfully kill
or propagate the carries until all carries are zero
fulfilling the terminating condition.

3.3. Architecture of PASTA

The general architecture of the adder is shown in Fig.
1. The selection input for two-input multiplexers
corresponds to the Req handshake signal and will be a
single 0 to 1 transition denoted by SEL. It will initially
select the actual operands during SEL = 0 and will
switch to feedback/carry paths for subsequent
iterations using SEL = 1. The feedback path from the
HAs enables the multiple iterations to continue until
the completion when all carry signals will assume zero
values (terminating condition is met).

3.4. State Diagrams

In Fig. 2, two state diagrams are drawn for the initial
phase and the iterative phase of the proposed
architecture. Each state is represented by (Ci+1, Si) pair
where Ci+1, Si represent carry out and sum values,

International Journal of Research in Advent Technology, Vol.3, No.7, July 2015
E-ISSN: 2321-9637

20

respectively, from the ith bit adder block. During the
initial phase, the circuit merely works as a
combinational HA operating in fundamental mode. It
is apparent that due to the use of HAs instead of FAs,
state (11) cannot appear. During the iterative phase
(SEL = 1), the feedback path through multiplexer
block is activated. The carry transitions (Ci) are
allowed as many times as needed to complete the
recursion.

Fig. 2. State diagrams for PASTA. (a) Initial phase.

(b) Iterative phase.

4. IMPLEMENTATION OF PARALLEL
SELT-TIMED ADDER (PASTA)

A CMOS implementation for the recursive circuit is
shown in Fig. 3. For multiplexers and AND gates we
have used TSMC library implementations while for
the XOR gate we have used the faster ten transistor
implementation based on transmission gate XOR to
match the delay with AND gates [7]. The completion
detection following Eq.(6) is negated to obtain an
active high completion signal (TERM). This requires a
large fan-in n-input NOR gate. Therefore, an
alternative more practical pseudo-nMOS ratio-ed
design is used. The resulting design is shown in Fig.
3(d). Using the pseudo-nMOS design, the completion
unit avoids the high fan-in problem as all the
connections are parallel. The pMOS transistor
connected to VDD of this ratio-ed design acts as a load
register, resulting in static current drain when some of
the nMOS transistors are on simultaneously. In
addition to the Ci s, the negative of SEL signal is also
included for the TERM signal to ensure that the
completion cannot be accidentally turned on during
the initial selection phase of the actual inputs. It also
prevents the pMOS pull up transistor from being
always on. Hence, static current will only be flowing
for the duration of the actual computation.

5. SIMULATION RESULTS

In this section, we present simulation results for
different adders using Tanner Tool version 13.0. For

implementation of other adders, we have used
standard library implementations of the basic gates.
The custom adders such as DIRCA/DICLA are
implemented based on their most efficient designs
from [11].

Fig.3. CMOS implementation of PASTA. (a) Single-

bit sum module. (b) 2×1 MUX for the 1 bit adder.
(c) Single-bit carry module. (d) Completion signal

detection circuit.
Initially, we show how the present design of

PASTA can effectively perform binary addition for
different temperatures and process corners to validate
the robustness under manufacturing and operational
variations. The Worst-case, best-case and average

International Journal of Research in Advent Technology, Vol.3, No.7, July 2015
E-ISSN: 2321-9637

21

case for maximum, minimum and average length carry
propagation is highlighted in the timing diagrams of
FIG. 4 (a), (b) and (c). In Fig. 4, the timing diagrams
for worst and average cases corresponding to
maximum and average length carry chain propagation
over random input values are highlighted. The carry
propagates through successive bit adders like a pulse
as evident from Fig. 4(a). The best-case corresponding
to minimum length carry chain does not involve any
carry propagation, and hence incurs only a single-bit
adder delay before producing the TERM signal. The
worst-case involves maximum carry propagation
cascaded delay due to the carry chain length of full 16
bit.

(a)

(b)

(c)

Fig.4. SPICE timing diagram for PASTA
implementation using TSMC 0.25 µm process. (a)

Worst-case carry propagation while adding operands
(FFFF)16 and (0101)16. (b) Best-case carry

propagation while adding random operands of
(F7F7)16 and (0000)16. (c) Average-case carry
propagation while adding random operands of

(F7F7)16 and (0101)16.

The delay performances of different adders are

shown in TABLE 1. We have used random operands
to represent the average case while best case, worst
case correspond to specific test cases representing
zero, 32-bit carry propagation chains respectively. The
delay for combinational adders is measured at 70%
transition point for the result bit that experiences the
maximum delay. For self-timed adders, it is measured

by the delay between SEL and TERM signals, as
depicted in Fig. 4(a).

TABLE 1: Comparison of different 16-bit adders
using TSMC 0.25 µm process with 5.0 volt input
voltage(and supply voltage) in Tanner Tool v13.0

Type of
Adder

Worst
Case
Delay
(ns)

Best
Case
Delay
(ns)

Average
Case
Delay
(ns)

Average
Power

Dissipation
(mW)

DIRCA 5.5 2.09 3.23 120.4

DICLA 3.9 2.19 3.03 286.3

CCSA 3.48 3.03 2.4 212.8

RCA 2.7 1.46 1.67 138.3

B-CLA 3.34 1.25 2.4 238.6

PASTA 2.8 0.3 1.39 108

PASTA performs best among the self-timed

adders. PASTA performance is comparable with the
best case performances of conventional adders.
Effectively, it varies between one and four times that
of the best adder performances. It is even shown to be
the fastest for TSMC 0.25 µm process. For average
cases, PASTA performance remains within two times
to that of the best average case performances while for
the worst case, it behaves similar to the RCA. Note
that, PASTA completes the first iteration of the
recursive formulation when “SEL = 0.” Therefore, the
best case delay represents the delay required to
generate the TERM signal only and of the order of
picoseconds. The interesting observation is that the
performances of the combinational adders and PASTA
improve with the decreasing process width and VDD
values while the performance of dual-rail adders
decreases with scaling down of the technology [15].

The average power consumption of different
adders for different operand choices (best, worst, and
average carry chain lengths) are shown in TABLE 1.
We measure average power consumed by
combinational and self-timed adders for the duration
of input pattern placement and completion of the
addition. PASTA consumes least power among the
self-timed adders.

6. CONCLUSION

This paper presents an efficient implementation of a
PArallel Self-Timed Adder (PASTA). Initially, the
theoretical foundation for a single-rail wave-pipelined
adder is established. Subsequently, the architectural
design and CMOS implementations are presented. The
design achieves a very simple n-bit adder that is area
and interconnection-wise equivalent to the simplest
adder namely the RCA. Moreover, the circuit works in
a parallel manner for independent carry chains, and
thus achieves logarithmic average time performance
over random input values. The completion detection

International Journal of Research in Advent Technology, Vol.3, No.7, July 2015
E-ISSN: 2321-9637

22

unit for the proposed adder is also practical and
efficient. Simulation results are used to verify the
advantages of the proposed approach.

REFERENCES

[1] J.L. Hennessy and D.A. Patterson, Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 1990.

[2] M.A. Franklin and T. Pan, ªPerformance
Comparison of Asynchronous Adders,º Proc. Int'l
Symp. Advanced Research in Asynchronous
Circuits and Systems, pp. 117-125, Nov. 1994.

[3] J.D. Garside, ªA CMOS VLSI Implementation of
an Asynchronous ALU,º Asynchronous Design
Methodologies, S. Furber and M. Edwards, eds.,
vol. A-28 of IFIP Trans., pp. 181-207 1993..

[4] D. Geer, “Is it time for clockless chips?
[Asynchronous processor chips],” IEEE Comput.,
vol. 38, no. 3, pp. 18–19, Mar. 2005.

[5] J. Sparsø and S. Furber, Principles of
Asynchronous Circuit Design. Boston, MA, USA:
Kluwer Academic, 2001.

[6] P. Choudhury, S. Sahoo, and M. Chakraborty,
“Implementation of basic arithmetic operations
using cellular automaton,” in Proc. ICIT, 2008,
pp. 79–80.

[7] M. Z. Rahman and L. Kleeman, “A delay
matched approach for the design of asynchronous
sequential circuits,” Dept. Comput. Syst.
Technol., Univ. Malaya, Kuala Lumpur,
Malaysia, Tech. Rep. 05042013, 2013.

[8] M. D. Riedel, “Cyclic combinational circuits,”
Ph.D. dissertation, Dept. Comput. Sci., California
Inst. Technol., Pasadena, CA, USA, May 2004.

[9] R. F. Tinder, Asynchronous Sequential Machine
Design and Analysis: A Comprehensive
Development of the Design and Analysis of Clock-
Independent State Machines and Systems. San
Mateo, CA, USA: Morgan, 2009.

[10] W. Liu, C. T. Gray, D. Fan, and W. J. Farlow, “A
250-MHz wave pipelined adder in 2-µm CMOS,”
IEEE J. Solid-State Circuits, vol. 29, no. 9, pp.
1117–1128, Sep. 1994.

[11] F.-C. Cheng, S. H. Unger, and M. Theobald,
“Self-timed carry-lookahead adders,” IEEE
Trans. Comput., vol. 49, no. 7, pp. 659–672, Jul.
2000.

[12] S. Nowick, “Design of a low-latency
asynchronous adder using speculative
completion,” IEE Proc. Comput. Digital Tech.,
vol. 143, no. 5, pp. 301–307, Sep. 1996.

[13] N. Weste and D. Harris, CMOS VLSI Design: A
Circuits and Systems Perspective. Reading, MA,
USA: Addison-Wesley, 2005.

[14] C. Cornelius, S. Koppe, and D. Timmermann,
“Dynamic circuit techniques in deep submicron
technologies: Domino logic reconsidered,” in
Proc. IEEE ICICDT, Feb. 2006, pp. 1 4.

[15] M. Anis, S. Member, M. Allam, and M. Elmasry,
“Impact of technology scaling on CMOS logic
styles,” IEEE Trans. Circuits Syst., Analog

Digital Signal Process., vol. 49, no. 8, pp. 577–
588, Aug. 2002.

